Rowing Performance Estimation Paper Published


We've been working on this project and paper for two years and it was finally published in Plos One on December 5, 2019. The citation is:

Cloud B, Tarien B, Liu A, Shedd T, Lin X, Hubbard M, et al. (2019) Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics. PLoS ONE 14(12): e0225690. https://doi.org/10.1371/journal.pone.0225690
Screenshot of the Plos One paper.

The abstract reads:

Competitive rowing highly values boat position and velocity data for real-time feedback during training, racing and post-training analysis. The ubiquity of smartphones with embedded position (GPS) and motion (accelerometer) sensors motivates their possible use in these tasks. In this paper, we investigate the use of two real-time digital filters to achieve highly accurate yet reasonably priced measurements of boat speed and distance traveled. Both filters combine acceleration and location data to estimate boat distance and speed; the first using a complementary frequency response-based filter technique, the second with a Kalman filter formalism that includes adaptive, real-time estimates of effective accelerometer bias. The estimates of distance and speed from both filters were validated and compared with accurate reference data from a differential GPS system with better than 1 cm precision and a 5 Hz update rate, in experiments using two subjects (an experienced club-level rower and an elite rower) in two different boats on a 300 m course. Compared with single channel (smartphone GPS only) measures of distance and speed, the complementary filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 44%, 42%, and 73%, respectively, while the Kalman filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 48%, 22%, and 82%, respectively. Both filters demonstrate promise as general purpose methods to substantially improve estimates of important rowing performance metrics.

Congratulations to everyone involved in making this happen! We hope this work helps others progress in sports performance estimation and other related topics.

Rowing performance estimation project team.

Research team members Li Wang, Ada Liu, Thomas Shedd, Paul Crawford, Britt Tarien, and Bryn Cloud