# On compactness of the $\bar{\partial}$-Neumann operator on Hartogs domains

We show that Property $(P)$ of $\partial\Omega$, compactness of the $\bar{\partial}$-Neumann operators $N_1$, and compactness of Hankel operator on a smooth bounded pseudoconvex Hartogs domain $\Omega={\{(z, w_1, w_2,\dots, w_n) \in \mathbb{C}^{n+1} \mid\sum_{k=1}^{n} |w_k|^2 < e^{-2\varphi(z)}, z\in\mathit{D}\}}$ are equivalent, where $D$ is a smooth bounded connected open set in $\mathbb{C}$...

PDF Abstract## Categories

Complex Variables